

High Carbon Steel Shot

Technical Data

Sigma Abrasives North America

Tel: (262)349-7821

Email: Sales@sigmateamna.com

Address: 938 Kingwood Drive Kingwood, TX 77339

Website: www.sigmateamna.com

Sigma High Carbon Steel Shot

Specifications--Sigma Steel Shot is manufactured to **SAE J827 and SAE J444 Specifications**.

Packaging--Sigma Abrasives steel shot is packaged in 55-gallon drums, palletized with 2,000 lbs of steel shot per drum.

Chemical Composition

Carbon: 0.80 – 1.2% Silicon: 0.40 – 1.5%

Manganese:

 $\begin{array}{lll} $870 - $110 & 0.35 - 1.2\% \\ $170 & 0.50 - 1.2\% \\ $230 - $660 & 0.60 - 1.2\% \\ $Sulfur & 0.05\% \ max \\ $Phosphorous & 0.05\% \ max \\ \end{array}$

Common Applications

SAND REMOVAL from metal castings, most commonly in a wheel blast machine **SCALE REMOVAL** on products manufactured with forging, stamping or heat-treating processes

SURFACE FINISHING of parts that require a uniform surface profile or texture **SHOT PEENING** of components to increase their fatigue life or fatigue resistance

Sigma Excellence

At Sigma Abrasives, our commitment to quality and service places our customers first. Our sales team has decades of abrasives experience and is able to give on the ground technical support and service when needed.

Quick Facts

- · Cast Steel Shot is spherical
- Steel shot is ideally suited for wheel blast applications
- Steel shot cleans by pounding the surface

Microstructure

Uniform Martensitic tempered to a degree consistent with the hardness range

Hardness 40 – 51 HRc

Other Characteristics

- · Shape: Round
- Bulk Density: 290-299 lbs/cu. ft.
- <1% non-metallic
- The specific density of cast steel shot shall not be less than 7 g/cc.

SAE	SCREEN SIZE- MM	S660	S550	S460	S390	S330	S280	S230	S170	S110	S70
8	2.36	All Pass									
10	2.00		All Pass	All Pass							
12	1.70	85% Min		5% Max	All Pass						
14	1.40	97% Min	85% Min		5% Max	All Pass					
16	1.18		97% Min	85% Min		5% Max	All Pass				
18	1.00			96% Min	85% Min		5% Max	All Pass			
20	.850				96% Min	85% Min		10% Max	All Pass		
25	.710					96% Min	85% Min		10% Max		
30	.600						96% Min	85% Min		All Pass	
35	.500							97% Min		10% Max	
40	.425								85% Min		All Pass
45	.355								97% Min		10% Max
50	.300									80% Min	
80	.180									90% Min	80% Min
120	.125										90% Min